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Absolute and convective instability of a liquid sheet 
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The linear stability of a viscous liquid sheet, in the presence of ambient gas is 
investigated. It is shown that there are two independent modes of instability, sinuous 
and varicose. The large-time asymptotic amplitude of sinuous disturbances is found 
to be bounded but non-vanishing for all calculated values of Reynolds numbers and 
the gas-to-liquid density ratios when the Weber number is greater than one half. The 
Weber number We is defined as the ratio of the surface tension force to the inertia 
force per unit area of the gas-liquid interface. When We is smaller than one half, the 
sinuous mode is stable if the gas-to-liquid density ratio is zero, otherwise it is 
convectively unstable. The varicose mode is always convectively unstable unless the 
density ratio, Q, is zero. Then it is asymptotically stable. The spatial growth rate of 
the varicose mode is smaller than that of the sinuous mode for the same flow 
parameters. The wavelength of the most amplified waves in both modes is found to 
scale with the product of the sheet thickness and &/We. It is shown, by use of the 
energy equation, that the mechanism of instability is a capillary rupture when We 2 
0.5, and the convective instability is due to the interfacial pressure fluctuation when 
We < 0.5. 

1. Introduction 
The dynamics of thin sheets of liquids was studied by G. I. Taylor (1959a, b, c), 

and the disintegration of liquid sheets in the context of atomization has been 
investigated by Clark & Dombrowski (1972), Crapper et al. (1973), Crapper, 
Dombrowski & Pyott (1975) and Weihs (1978). Brown (1961), Lin (1981) and Lin & 
Roberts (1981) studied the stability of liquid sheets formed by extrusion, which are 
encountered in curtain coating applications. A thin sheet of viscous liquid flowing 
between two vertical guide wires is an integral part of a process called curtain 
coating. Some descriptions of this process and its applications in various industries 
can be found in the references cited above. Lin showed that in the absence of ambient 
gas, the viscous liquid curtain is asymptotically stable with respect to temporally or 
spatially growing disturbances when the Weber number is smaller than one half. The 
Weber number is defined here as the ratio of the surface tension force to the inertia 
force per unit area of the free surface. Lin predicted the wave speeds of two 
distinctive modes of disturbances which exhibit themselves in the form of sinuous 
and varicose waves. These waves were observed by Lin & Roberts (1981) and 
Antoniades & Lin (1980). They also exploited the wave properties in a stable liquid 
curtain to experimentally determine the value of dynamic surface tension on a 
rapidly moving free surface. Kistler & Scriven (1984) investigated the curtain 
coating flow numerically by use of finite-element methods. 

In the theoretical works cited above, the effect of the ambient gas is completely 
neglected. On the other hand, all of the experimental works cited above were carried 
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FIQURE 1. Definition sketch. 

out in the presence of the ambient gas. Moreover, Taylor (1963) showed in his study 
of the ripple formation on an infinitely thick viscous circular jet that the ambient gas 
may have the effect of decreasing the interfacial wavelength by orders of magnitude 
even if the gas viscosity is neglected. If this is also true for viscous sheets, then the 
effect of the ambient gas is of great importance in many applications, including 
curtain coatings and fuel atomization by the use of sheets formed from various 
industrial devices. The results of the solution to  the problem formulated in $2 showed 
that this is indeed the case. It is shown that when the Weber number is smaller than 
0.5, the sheet is convectively unstable unless i t  is in vacuum. Then it is asymptotically 
stable. When We 2 0.5, the sheet is convectively stable in a vacuum for finite 
wavelength of disturbances but pinch-point singularity is encountered at zero 
wavenumber. The physical mechanisms of instability are sought from an energy 
balance carried out in 93, and are expounded in the light of numerical results given 
in $4. The practical implications of the results are discussed in the final section. 

2. Stability analysis 
Consider the steady flow in a Newtonian liquid sheet, which is extruded vertically 

downward, as shown in figure 1. Assuming that the flow is essentially two- 
dimensional and that the effects of surface tension and the ambient gas as well as the 
normal stress variation across the sheets are negligible, Taylor derived the following 
dimensionless differential equation for the velocity variation in the liquid sheet : 

(ux/u)x--ux-u-l = 0, ux+vy = 0, ( 1 )  

where U and V are the dimensionless velocity components in the directions of the 
Cartesian coordinates X and Y respectively, and the subscripts denote differentiation. 
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The derivation of (1) can be found in the work of Brown (1961). It should be pointed 
out that the sign of the last term in the first equation of (1) is opposite to that of the 
corresponding term in Taylor’s equation, owing to the opposite direction of the X- 
axis used here. The dimensionless quantities appearing in ( 1 )  are related to  their 
dimensional counterparts (Ul, V,) and (Xl, q)  by 

(Ul, v,) = (4p,g/p,)f(U, V ) ,  (XI, q)  = (4p1/p1)kf(X, Y ) ,  

where p1 and p1 are respectively the dynamic viscosity and density of the liquid, and 
the distance XI is measured from the upper edge of the sheet in the direction opposite 
to that of the gravitational acceleration 9.  Brown found good agreement between the 
numerical solution of (1) and his measured velocities, except near the outlet of the 
fluid feeder, when the sheet is extremely thin. Moreover, in a certain parameter 
range, the velocity in the sheet is essentially uniform. 

In  the present stability analysis, the distance will be non-dimensionalized with the 
maximum sheet thickness do, and the velocity will be non-dimensioanlized with the 
average velocity U, = &/do,  Q being the volumetric flow rate per unit width of the 
sheet. Denoting the new dimensionless basic state velocity and the Cartesian 
coordinates respectively by (ti, V) and (z, y ) ,  we 

iiz = SU, = -au, 

have 

I 
I R = pa = Reynolds number, 

4% 

uz,- 
9do 

F = - = Froude number. 

According to  figure 5 of Brown, U, = O( 1). Thus for the case of thin sheets such that 
6 < 1, the spatial variation in the basic-state velocity is much smaller than order one, 
according to ( 2 ) .  We consider here only the case of 6 6 1. This inequality is amply 
satisfied in many applications, including the atomization of fuel in diesel engines and 
film coating. I n  the film coating application, the viscous liquid sheet is extruded by 
a rapidly moving substrate upon which the sheet falls perpendicularly. For any given 
feed rate Q the sheet thickness may become so thin, owing to the fast moving 
substrate, that  S becomes much smaller than one. S -4 1 implies that  gravitational 
force is much smaller than viscous force, since 6 represents the ratio of the former to  
the latter force. Following Taylor’s (1963) treatment of a related problem, we neglect 
the viscosity of the ambient gas. This neglect of gas viscosity is based on the 
observation that the instability is caused by capillary waves which may be assisted 
by the pressure fluctuation a t  the interface, and also on the assumption that the gas 
viscosity is weakly stabilizing. This assumption is based on the finding of a related 
work by Tomotika (1934) who showed that the gas viscosity is stabilizing for a 
viscous liquid jet emerging into a quiescent gas. Hence the basic flow of the present 
stability problem is given by 

PI = P2 = constant, h = +_0.5d0, 
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where the subscript 2 denotes the gas phase, pl and P2 are the pressures in the liquid 
sheet and in the ambient gas respectively and h is the distance measured from the X,- 
axis to the liquid-gas interface. 

To investigate the stability, we perturb the basic flow with disturbances, and write 
the perturbed velocity and pressure fields respectively as 

6 = q + u ; ,  pi =e+p; ( i  = 1,2) 

where primed quantities are perturbations, i = 1 stands for the liquid phase and i = 
2 stands for the gas phase, and 

q = ( -U0,O) ,  = (0,O). 

Substituting the perturbed velocity and pressure into the Navier-Stokes equations, 
subtracting out the basic state, and retaining only the terms of first order in 
perturbation, we have the following governing equations of the linear stability : 

(3) 
(a, - 4 1  uo a,) u; = - (VP2/Pi + vi v2uu;,\ 

v - u ; = o  ( i =  1,2), I 
where t is time, pz is the gas density, St, is the Kronecker delta function and vz = 0. 
It should be pointed out that the gravitational force term is absent in (3), because 
it was subtracted out by the basic-state velocity and pressure fields. In terms of the 
following dimensionless variables : 

(3) can be rewritten as 

(8, - 4, a,) V, = - (Pl/Pl) VPi + ( W R )  V2%, (4) 

V * u , = O .  ( 5 )  

In the linear theory, the boundary conditions need not be applied at  the perturbed 
interfaces 

[=  +0.5+7+,  

where 7+ and 7- are respectively the interfacial displacement from y = 0.5 and 
y = -0.5. We may expand all variables at the interface about y = k0.5 by use of 
Taylor series, and retain only first-order terms in perturbations. In practice, the 
wave amplitude 7 must be even smaller than 6 in order to allow the Taylor series 
expansion. However, in linear theory 7 is infinitesimal, and this requirement is 
satisfied. Hence we apply the expanded boundary conditions at  y = k0.5. From the 
balance of normal force per unit area of the interfaces at 5 = 0.5+7+ and 
6 = -0.5+7-, we have 

2v 
0, (6a)  -1,y= P1 -P2 * K(r]* R 

where We = S/p, q d o ,  S being the surface tension. The balance of tangential stress 
requires at  y = kO.5 that 

V l , Z + U l , Y  = 0. (6b)  
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Since the interfaces are material surfaces, they must satisfy the kinematic boundary 
condition a t  y = +0.5, 

and a t  y = -0.5 

There are altogether eight boundary conditions in 6 (a-d). 

will be sought in the following form: 

Vi = "1+ , 7 - 4 i " l + , z  (i = 192); (6c) 

v. e = 7 - , 7 - 4 i " l - , z  (i = k 2 ) .  ( 6 4  

The two-dimensional normal mode solution of the governing differential system 

(vi,ui,Pi,"l*) = [v"i(y), 6i(y),+i(y),$,Iex~ ( 0 7 + i k ~ ) ,  

where w and k are respectively the complex frequency and wavenumber of 
disturbances. 

Taking the divergence of (4) and using the continuity equation (5 ) ,  we have 

v2pi = 0. 

The bounded normal-mode solutions of this Laplace equation in the liquid sheet and 
the ambient gas yield the amplitudes of the pressure perturbations, 

(7 a)  

(7b, c )  

( 7 4  e )  

$il = [(ik-w)/k][A cosh(ky)+Bsinh(ky)], 

$* = -QwF+exp(-ky), 

$2 = -QwF-exp(ky), 

y > 0, kr > 0;  $i2 = QwF+exp(ky), 

$i2 = QwF-exp(-ky), 

y > O,k, < 0, 

y < 0, k, < 0;  y < O,kr > 0;  

where Q = ( p 2 / p l ) ,  kr is the real part of k, and A ,  B, F+ and F- are integration 
constants. Only the characteristic equations for the case of k, > 0 will be derived in 
detail. It will be shown that the characteristic equations for both cases remain 
essentially the same. The amplitudes of the disturbance velocity components can be 
obtained from (4) with p, given by (7a) ,  (7 b )  and (7c). They are 

= A sinh (ky) +B cosh (ky) + C sinh (my) + D  cosh (my), 1 
1 

6, = -[kA cosh(Ly)+mCcosh(my)+kBsinh(ky)+mDsinh(my)], 
k 

m = [k2+R(w-ik)]i, 6, = f kF* exp (T  ky), 6, = ikF* exp ( f ky). (9) 

Substitution of the solutions obtained into the boundary conditions yields a system 
of eight linear homogenous equations in eight unknown components A, B, C, D ,  F+, 
F-, 7 and 7- of the eigenvector. These unknowns can be found directly from the eight 
equations. However, we shall exploit the fact that the odd and even eigensolutions 
are decoupled, and reduce the size of the system of equations. 

Por the odd solution of ul, B = D = 0 in (8). The amplitudes of the interfacial 
displacements can be obtained from (6c) and ( 6 4  with i = 2. They are 

- k  
$, = +-F* w exp (-gk). 

It follows from (6c),  ( 6 4  and ( 8 )  that we have for the odd mode 

(w-ik)i* = +[Asinh(ik)+Csinh (+)I. 
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This equation states that the two interfaces of the liquid sheets are displaced in 
opposite directions for the odd mode, i.e. 

Q+ = -Q-. (12) 

Hence this mode will be termed the varicose mode. Substitution of (12) into (10) 
shows that 

(13) F+ = F- = F. 

Substituting (7), (8), (lo),  (12) and (13) into the boundary conditions (6a ) ,  (6b) and 
( 6 4  with i = 1, we have respectively 

and 

i k - w  2k 2 m  
R 

A [ T - z ]  cosh ( i k )  - C-cosh (+) + F  

A[2k2 sinh ( t k ) ]  + C ( m 2  + k 2 )  sinh (!p) = 0, 

k A sinh (ik) + C sinh (h) + (w - ik) -F exp ( - i k )  = 0. 
w 

It is straightforward to show that the solution of this system is given by 

(14) 

where the complex eigenfrequency w and complex wavenumber k are related by the 
characteristic equation 

k2(m2 + k 2 )  exp ( - i k )  F 
A = -  , c= 2 k 3 e x p ( - $ k ) F  

OR sinh ( i k )  wRsinh(+) ’ 

Qw2 + We k3 + (m2 + k 2 )  R-2 coth ( i k )  + - k3m coth ($) = 0. (3 
Equation (15) was derived for the case of k, > 0. It will be shown presently that for 
the case of k, < 0, the characteristic equation remains (15) except that the sign of the 
first term is changed. It is clear that the pressure fields given in (7) for k, < 0 affect 
only the solution for the gas phase. Because of the sign reversal in the exponent of 
the pressure expressions in (7) due to the change in sign of k,, the signs of exponents 
in the exponential functions appearing in all equations between (7) and (14) must be 
reversed. In addition, the sign of Q must be changed since there is a difference in the 
sign of Q for different signs of k,  in (7). However, the sxponential function is factored 
out in the final step of arriving at (15). Thus, the characteristic equation remains the 
same except that the sign of Q is changed. It will be seen that this change of sign of 
Q does not affect the results to be presented. 

For the even-mode solution, A = C = 0. It follows from (8), (6c) and ( 6 4  that the 
fluid particle velocities as well as the interfacial displacements a t  the two interfaces 
are in unison, i.e. i+ = i-, and F+ = F-. The algebra required to yield the eigenvectors 
and the secular equations for this sinuous mode is identical to that for the varicose 
mode, except that hyperbolic sine and tangent functions must respectively be 
replaced by the hyperbolic cosine and cotangent functions and vice versa. Thus the 
characteristic equation for the case of k,  > 0 is 

Qwz + We k3 +RP2(m2 + k2)  tanh ( i k )  + k3m tanh (9%) = 0, (16) 
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and the eigenvector is given by 

(17) 
k(m2 + k2) exp ( -+k) 

3 = -  , I > =  
wR cosh (ik) 

2k3 exp ( - ik)  
wR cosh (+m) ’ 

here F is put equal to 1 without loss of generality. Again, (16) remains valid for 
k, < 0, except that the sign of Q needs to be changed. 

When k --f co, [coth (ik), coth (*), tanh (gk), tanh (+)I -+ 1 and both (15) and (16) 
reduce to 

[k2+R(w-ik)]f = 0. 
[2k2 +R(w- ik)I2 

R2 
Qw2 + W, k3 + 

This is the characteristic equation obtained by Taylor (1963) in his investigation of 
the generation of ripples by wind over an infinitely deep viscous fluid. 

Identifying the wave frequency w and the wavenumber k with the corresponding 
expressions in the work of Lin (1981), we have 

w = iac, k = a, w-ik = -ia(c+ 1) = iac’. 

Substituting these into (15) with Q = 0, we have 

4iac‘ 4a2 4am 
R R2 R 

c’2 + We a tanh ($a) + tanh ($a) coth (h) = 0. 

Multiplying this equation with iaRc’(m2 + az) and rearranging terms, we have 

c ’ ~  + c’ - [l- 2am(m2 + 2 - l  coth (h) tanh (:a) + We a tanh (+) [2a2(m2 + a2)-’] = 0. 
2ia 
R 

This is (13) of Lin (1981), with dimensionless sheet thickness h = 1 for the varicose 
mode in the absence of the ambient gas. Similarly (16) in this work with Q = 0 can 
be reduced to (17) of Lin’s sinuous mode characteristic equation. 

It should be emphasized that both k and w are treated as complex in this work. The 
imaginary part of k = k, + iki and the real part of w = 0, + iw, give respectively the 
spatial and temporal growth of the disturbances. For the given flow parameters W,, 
Q ,  R and given wavenumber-frequency pairs (k,,wJ, the values of ( k , , ~ , )  will be 
obtained from the characteristic equations to determin the stability of the liquid 

unstable depending on the flow parameters. The numerical solution of the 
characteristic equations was accomplished by use of the Muller (1956) method. 

sheet. It will be shown in $4 that the sheet may be \ bsolutely or convectively 

3. Energy budget 
In order to trace the energy sources of the absolute and convective instabilities, we 

balance the energy budget in a disturbed liquid sheet. Consider a control volume of 
the liquid per unit sheet width over one wavelength, h = 27c/k,, of the disturbance. 
Forming the dot product of (4) for liquid (i = 1) with u,, integrating over the control 
volume, using (5 )  and the Gauss theorem to reduce some of the volume integrals to 
surface integrals, we arrive at the energy equation (cf. Kelly et al. 1989; Creighton 
1989) 

R = &+i+d, (19) 
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K 5 time rate of change of disturbance kinetic energy 

= JO,(a,-azpdx, e = v . ; v ;  

R = rate of reversible work 

I = rate of irreversible work 

[u(u, +v,) + ~ w v ~ ] ; I ? ~ . ~  dx [v(u, + v,) + ~uu,]~~!!, dy ; 
-0.5 

D = rate of energy dissipation by viscosity 

where [G(z)]:IE [G(a) -@@)I. 
The first term in the reversible work rate integral can be rewritten by applying the 
boundary condition (6 a) ,  

Note that in (19) the last term in the above integrand cancels the second term of the 
first integral in the expression of i. Moreover, (u,+v,) in the first integral of f 
vanishes by virtue of the boundary condition (6b) .  Henceforth it is understood that 
I consists of only the second integral in the above expression of I ,  and R is now 
redefined as 

= -[, [P,.,l;~~&.dx-f):5 bUl=%dY -k K[, [*v('Vkt:)3,]51%.5dx- 

The first integral represents the power P exerted by the gas pressure on the liquid 
sheet and the second integral represents the flow work rate at  the top and bottom of 
the control volume. The third integral in R gives the surface tension work rate 8. 
Equation (19) can now be rewritten as 

ki = P + G + 8 + f + D ,  (20) 

where 

It should be noted that the upper and lower signs in S are associated respectively 
with the surface at  y = 0.5 and y = -0.5. 

It is understood that the pressure and velocity components appearing in all 
integrals in this section are the real parts of their counterparts in $2. Each integral 
in (20) is evaluated with the adaptive Rombers (1984) method. To serve as a check 
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0 0.5 1 .o 1.5 2.0 2.5 
k,  

FIGURE 2. Stability of a liquid sheet. Q = 0, W, = R =-1. 

on the final accuracy, we add all integrals on the right-hand side of (20) and compare 
the result with the independently evaluated x. The error is mostly less than 1 %. For 
a better appreciation of the relative importance of each item we shall present the 
energy budget in the variables defined below: 

@,@f, i, i, d )  = [ (P ,P*$J ,B) /x ]  x 100. 

4. Results and discussion 
The spatial growth rate curves w, = 0 for the sinuous and varicose disturbances in 

a liquid sheet a t  Q = 0, We = 0.0001 and R = 1 are given in figure 2. wi increases with 
k, along these curves. Thus, the disturbance is convected downstream. Therefore, 
k, < 0 on thes curves signifies that the sheet is convectively stable below the slot a t  
the head of liquid sheet. These results confirm those obtained by Lin (1981) with a 
method of small-wavenumber expansion. He found that a liquid sheet in vacuum is 
stable if W, < 0.5. However, in their experiments, Lin & Roberts (1981) and 
Antoniades & Lin (1980) observed that when We > 0.5 of a liquid sheet ruptures 
explosively. An example of an unstable liquid sheet with We > 0.5 is given in figure 
3. Two branches of spatial amplification curves meet tangentially at the origin in the 
(k,, hi)-space of figure 3 (a). Figure 3 ( b )  shows how the upper and lower branches of 
curves coalesce at  the origin when w, is decreased towards zero from a finite value. 
wi decreases (increases) with increasing k, along the upper (lower) branch. Thus, the 
disturbances corresponding to the upper and lower branches propagate respectively 
in the upstream and downstream directions. Consequently, the upper branch with 
k, > 0 and the lower branch with k, < 0 both represent evanescent waves for finite k,. 
A similar situation is encountered for the case of Q + 0 to be described in the next 
paragraph. Thus the theoretical results appear to contradict the known experimental 
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W ,  = -0.016,0, > 0 

0.002 

o’ooiT 
Q, = -0.016, W ,  < O-\ 

k ,  

0.08 t 
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- 0 . 0 2 2  
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FIGURE 3. Sinuous mode. Q = 0, W,  = 0.6, R = 1. (a) Amplification curves; (b) formation of 
pinch-point singularity. 

results for We >, 0.5. An explanation is required. It is shown in the Appendix that the 
origin in figure 3 is a double pinch point where 0, = 0. While the double-pinch-point 
singularity is encountered at finite w, in the classical cases (Briggs 1964), it is 
encountered here a t  w, = 0. In the usual absolute instability, the relevant Green’s 
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function becomes unbounded as 7 --f 00 (see for example, equation (15) of Bers 1983), 
when a pinch-point singularity is encountered. In the present case, the relevant 
Green’s function is bounded, as shown in the Appendix, but is non-vanishing for all 
time and all spatial positions. Thus the evolution of disturbances does not satisfy the 
definition of convective stability (cf. (14) of Bers) 

lim G(x, 7) + 0 for all x. 
7+m 

Thus, the infinitely long wave for We > 0.5 is not evanescent. Nor does it satisfy the 
condition of convective instability (cf. (16a) and (16b) of Bers) 

lim G(x, 7) --f 0 for any finite x 
7’ m 

and lim G(zv, 7) + co, 
7+co 

where x,  is the distance measured from a reference frame moving with the group 
velocity. The evolution of disturbances is not that of an absolute instability either, 
since it does not satisfy the condition of absolute instability (cf. (15) of Bers) 

lim G(x,  7) -+ co for all x. 
7’ co 

The evolution of the absolutely unstable disturbance and that of the present 
disturbance have an important common character : both of them remain non- 
vanishing for all time and all z. Note that the absolutely unstable disturbances are 
modified by nonlinear effects before they become unbounded and may become 
nonlinearly stable. The non-vanishing but bounded neutral disturbance we 
encountered here will also be modified by nonlinear effects a t  some finite time and 
may become nonlinearly unstable. It appears that the infinitely long neutral wave 
encountered here for We > 0.5 leads to nonlinear instability. It is interesting to note 
that the liquid sheet becomes unstable only with respect to a disturbance of infinitely 
long wavelength when Q = 0 and We > 0.5. This suggests that when the nonlinear 
effect is taken into account, the bifurcation is not that of Hopf. In  fact experiments 
showed that when We > 0.5, the liquid sheet ruptures explosively without oscillation 
for a wide range of &. 

The presence of the ambient gas cannot remove the singularity a t  k = w = 0 when 
We > 0.5, as is demonstrated in figure 4 for a wide range of R. The branches of w, = 
0 in the region k, < 0 are not shown in figure 4. As in figure 3, wi < 0 (> 0) for the 
upper (lower) branch of the amplification curve in figure 4. Moreover, wi decreases 
(increases) along the upper (lower) branch with increasing k,. Thus, the upper (lower) 
branch describes the upstream (downstream) propagating evanescent (spatially 
growing) waves. Again, the two branches coalesce a t  the origin where w, = 0. Hence 
the large-time asymptotic behaviour of the disturbance at any Jinite x remains the 
same as that for the case of Q = 0. However, because the lower branch crosses the 
real k-axis, it can be shown that the disturbance becomes unbounded as x +- 00,  

7+ co (Bers, equation (68)). It should be emphasized that the lower branch of the 
amplification curve in this figure does not signify convective instability, since the 
present large-time asymptotic behaviour does not satisfy the first condition of 
convective instability, i.e. 

lim G(x, 7) -+ 0 for any finite x. 
r+w 
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0 0.001 0.002 0.003 0.004 0.005 
k,. 

FIGURE 4. Sinuous mode. Q = 1.3 x W, = 0.501. 

0 1 2 3 4 5 6 

k, 

FIGURE 5. Effect of Q on convective instability, sinuous mode. W, = R = 1. 

We propose to call the instability we encounter here the pseudo-absolute instability, 
because the entire flow field is perturbed. 

Q = 0.0013 and Q = 0.013 in figure 5 correspond respectively to the air-to-water 
density ratio at 1 and 10 times atmospheric pressure at  room temperature. The 
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-0.0012 
0 0.02 0.04 0.06 0.08 0.10 

k, 
FIQURE 6. Asymptotic stability of varicose mode disturbances. Q = 0, R = 1. 

FIGURE 7. Stabilizing effect of surface tension on convectively unstable disturbances. Q = 0.013, 
R = 1, varicose mode. 

spatial amplification curves w, = 0 in this figure can be approached from w, > 0 
below the kr-axis, without violating the causality condition. Moreover, wi increases 
with increasing k, along these curves. Thus these curves signify the spatial 
amplification of convectively unstable sinuous disturbances propagating in the 



686 S. P. Lin, 2. W .  Lian and B. J .  Creighton 

~ ~ 1 0 4  IC,X 108 Wi P Pf s i d 

130 45891 -0.2478 1.24 0 184.55 -0.10 -85.68 
1.3 49169 -0.2566 0.01 0 179.20 -0.10 -79.20 

TABLE 1. Pseudo-absolute instability, R = 100, We = 2.6, k, = 0.2 

W,x lo4 k, k, Wi P P, s i d 

13 0.508 0.0255 0.505 204.92 0.03 -104.35 0.01 -0.61 
1.3 6.249 0.1261 6.242 312.43 0.55 -195.24 0 - 17.74 

TABLE 2. Convective instability, sinuous mode; R = 5000, Q = 0.0013 

downstream direction (Bers 1983). Recall that i t  was shown in figure 2 that  the sheet 
is stable when Q = 0,  with the rest of flow parameters being the same. Thus, the 
presence of ambient gas causes the convective instability. No pseudo-absolute 
instability has been found for the varicose mode. In  the absence of ambient gas, the 
varicose mode was found to be stable for a wide range of flow parameters. Figure 6 
provides an example. However, in the presence of the ambient gas, the varicose mode 
is found to  be convectively unstable in the same wide range of parameters. Figure 7 
gives such an example. Figure 7 also shows that the surface tension is stabilizing, 
since the amplification rates decrease as We increases. The same dependence of 
growth rates on We is found for the sinuous mode when We < 0.5. Thus the convective 
instability is not caused by the surface tension. The growth rates of convectively 
unstable varicose disturbances are in general slightly smaller than that of the sinuous 
mode. The critical Weber number below which the instability is convective but 
above which it is pseudo-absolute is found to be 0.5 for R ranging from 0.1 to 10000 
and Q from 0.00013 to 0.13. 

Table 1 gives a typical energy budget for the case of pseudo-absolute instability. 
Tables 2 and 3 give typical energy budgets for the convective instability of the 
sinuous mode and the varicose mode respectively. The values of k,, ki and wi are all 
taken from the calculated spatial amplification curves w, = 0. In  particular, these 
values in tables 2 and 3 correspond to the maximum spatial growth rate on w, = 0. 
While the positive dominant item in the pseudo-absolute instability case is the 
surface-tension-work term, that in the convective instability case is the terms due to 
the gas pressure work a t  the interface. Moreover, the surface-tension-work terms in 
the convective instability are negative. Thus while the surface tension work is 
responsible for the pseudo-absolute instability, the gas pressure work is responsible 
for the convective instability of both varicose and sinuous modes. It has been pointed 
out that the spatial growth rate of the varicose mode is smaller than that of sinuous 
mode for the same flow parameters. Comparing the viscous-dissipation and the 
surface-tension terms in tables 2 and 3, we find that the reason for this is that the 
varicose mode entails larger viscous dissipation and surface tension work. It can be 
seen that k, in tables 2 and 3 scales with &/We. The same situation has been found 
in other ranges of parameters. 
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W , X  104 k, k, 0 1  P Pf 8 i d 

13 0.74 0.0079 0.7397 403.84 0.32 -298.81 0 -5.35 
1.3 6.30 0.1256 6.2927 317.67 0.59 -2200.14 0 -18.11 

TABLE 3. Convective instability, varicose mode; R = 5000, Q = 0.0013 

5. Conclusion 
It was shown in the last section that k ,  corresponding to the maximum k, scales 

with &/We. This implies that in order to generate small droplets from atomizing a 
liquid sheet, one must use larger Q and smaller We, since the atomized droplets scale 
with the most amplified waves. Moreover, i t  is possible to atomize a liquid sheet to 
form droplets of radius, a ,  much smaller than the sheet thickness, because a - h - 
( l / k r )  N W,/Q, and the last ratio can be made quite small by use of a large sheet 
velocity, small surface tension or large ambient gas density. On the other hand, if one 
wishes to eliminate ripples in a curtain coating, one may operate in an environment 
without ambient gas. Then the curtain is stable if We < 0.5, which is easily satisfied 
in a high-speed curtain coating. The critical Weber numbers, We,, above which there 
is absolute instability and below which there is convective instability in a viscous jet 
were found to depend on Reynolds number by Leib & Goldstein (1986a, b )  for the 
case of Q = 0 and by Lin & Lian (1989) for the case of Q 4= 0. Lin & Lian also showed 
the strong dependence of We, on Q. Here we found that the critical Weber number 
is insensitive to Q and R for a viscous sheet in an ambient gas. There is no explanation 
for this difference yet. The physical significance of pseudo- and genuine absolute 
instabilities in the context of nonlinear theory is yet to be explored. The nonlinear 
mechanism of direct resonance advanced by Akylas & Benney (1980) may be 
relevant. The effects of gas viscosity on the sheet stability remains unknown. 
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was conducted using the Clarkson computer facility and the Cornell National 
Supercomputer Facility, a resource of the Center of Theory and Simulation in 
Science and Engineering, which receives major funding from NSF and IBM 
Corporation, with additional support from New York State and members of the 
Corporate Research Institute. 

Appendix. Neutral instability 

eq. (6) of Bers 1983) 
The Green’s function corresponding to the dispersion relation (16) is given by (cf. 

exp (ikx) dk 
2xD(k ,  w )  ’ ( w T ) ~ ( x ,  w ) ,  I ( z ,  w )  = 

where D ( k , w )  is the left-hand side of (16), and the integrations in (A 1) are to be 
carried out along paths to be explained. It is easily verified from (16) that, at k = 
k, = 0, w = 0, = 0 
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Taylor's series expansion of D(k,  w )  about a pinch point (k,, w,) gives to lowest order 

(k-ko)2 + ~ ( w - w , )  (k- k,) + B(w- w , ) ~  = 0, 

where 

It follows that 
k-k, = [y(w-w,),4w-w,)l, 

where y = i[-a+(a2-4p)i], h = i[-a-(a2-4p)4]. 

The double root at (k,, w,) is formed by the coalescence of the upper branch of the 
amplification curve k,(w) and the lower branch k,(w) as w, is reduced from a positive 
value to zero as indicated in figure 3 ( b ) .  Thus the dispersion relation near (k,, 0,) can 
be written as 

D(k,  0 )  = Ik- k,(w)l [k- k,(w)lL(k, 4, (A 2) 

where L(k, w )  is regular near (k,, w,) and 

k, = k , + y ( ~ - w , ) ,  k, = k,+A(w-w,) .  (A 3) 

Since D-' is single-valued and has only isolated poles and limk+m D-l+ 0 faster than 
k-l ,  I(z, w )  can be evaluated by closure in the upper k-plane for z > 0 and in the lower 
k-plane for z < 0. The theory of residues then gives 

where u(z) is the unit step function in x. Substituting (A 2) and (A 3) into (A 4), we 
have 

where IR represents the remaining summation in (A 4) which are not near k,. Since 
u( -2) = 1 - u(x), in the limit of w -+ w,, k, -+ k, and k, -+ k,, (A 5 )  can be rewritten as 

where the first term extends over all z, positive or negative, and has a pole of first 
order at  w = w,. The second term gives the residue in the second-order pole a t  k = 
k, and is regular in w ,  as is the last term. With the expression of I(%, w )  near (k,, w,) 
given above, the Green's function in (A 1) can be evaluated by use of the theory of 
residues, 

G(z, 7) - l exp  (ik, z) exp (w7) dw/2~(w--w,) 

- i exp (ik, z + w, 7). 

Here in this example k, = w, = 0, and G(z, 7) remains non-vanishing for all time and 
all finite 5.  
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